Prime ideals and radicals of polynomial rings and Z-graded rings

Edmund Puczyłowski
University of Warsaw, Poland

Noncommutative Rings and their Applications
Lens, 1-4 July 2013

1 Notation

- All rings are associative but not necessarily with 1 .
- The usual extension of a ring A by adjoining 1 to A is denoted by A^{*}.
- To denote that I is an ideal of a ring A we write $I \triangleleft A$.
- Nil, J, G denote the nil, Jacobson and Brown-McCoy radical, respectively.
- $G(A)=\bigcap\{I \triangleleft A \mid A / I$ simple ring with 1$\}$. In particular a ring A is Brown-McCoy radical if it cannot be homomorphically mapped onto a (simple) ring with 1.

2 Some old results and problems

- 1956 Amitsur

Theorem 2.1 For every ring $A, J(A[x])=I[x]$ for some nil ideal I of A.

Questions 2.2 1. Is $J(A[x])=\operatorname{Nil}(A)[x]$?
2. Is $J(A[x])=\operatorname{Nil}(A[x])$?
3. Is $\operatorname{Nil}(A[x])=\operatorname{Nil}(A)[x]$?

- 1972 Krempa

Theorem 2.3 The following conditions are equivalent
a) For every $\operatorname{ring} A, J(A[x])=\operatorname{Nil}(A)[x]$;
b) For every nil ring A the ring $M_{2}(A)$ of 2×2 matrices over A is nil;
c) Koethe problem has a positive solution.

Koethe Problem (1930): Is every left nil ideal of an arbitrary ring A contained in $\operatorname{Nil}(A)$?.

- 1978 Krempa and Sierpińska

Theorem 2.4 For every ring $A, J\left(A\left[x^{-1}, x\right]\right)=I\left[x, x^{-1}\right]$, where I is an ideal of A such that $J(A[x])=I[x]$.

- 1980 Bedi and Ram

Theorem 2.5 1. If σ is an endomorphism of a ring A, then $J(A[x ; \sigma]=(J(A) \cap I)+I[x ; \sigma] x$, where $I=$ $\{r \in A \mid r x \in J(A[x ; \sigma])\}$.
2. If σ is an automorphism of A, then $J\left(A\left[x, x^{-1} ; \sigma\right]\right)=$ $K\left[x, x^{-1} ; \sigma\right]$, where K is a σ-invariant ideal of A such that for every $r \in K, r x \in J\left(A\left[x, x^{-1} ; \sigma\right]\right)$.

It is not known whether $I=K$.

- ~ 1980 Bergman.

Theorem 2.6 If R is a Z-graded ring, then $J(R)$ is homogeneous.

Questions 2.7 (1993 E.P.). Let A be a nil ring.

1. Is $A[x]$ Brown-McCoy radical?
2. Let X be a set of cardinality ≥ 2.
a) Is the polynomial ring $A[X]$ in commuting indeteminates from X Brown-McCoy radical?
b) Is the polynomial ring $A\langle X\rangle$ it non-commuting indeterminates from X Brown-McCoy radical?
3. Suppose that R is a Z-graded ring. Is $\operatorname{Nil}(R)$ homogeneous?

3 Approximations of positive or negative solutions of Koethe problem

- 2000 Smoktunowicz constructed a counterexample to Amitsur's Problem 3.
- 2001 Smoktunowicz and E.P. constructed a counterexample to Amitsur's Problem 2.
- 1998 Smoktunowicz and E.P.

Theorem 3.1 For a given ring $A, A[x]$ is BrownMcCoy radical if and only if A cannot be homomorphically mapped onto a prime ring A^{\prime} such that for every $0 \neq I \triangleleft A^{\prime}, Z\left(A^{\prime}\right) \cap I \neq 0$.

This in particular shows that if A is a nil ring, then $A[x]$ is Brown-McCoy radical.

Let \mathcal{P} be the class of prime rings A with large center, i.e., for every $0 \neq I \triangleleft A, I \cap Z(A) \neq 0$.

Define for an arbitrary ring $A, S(R)=\bigcap\{I \triangleleft R \mid$ $R / I \in \mathcal{P}\}$.

Corollary 3.2 $G(A[x])=S(A)[x]$ for every ring A.

- 2001 Beidar, Fong and E.P.

Theorem 3.3 If A is a nil ring, then $A[x]$ is Behrens radical, i.e., $A[x]$ cannot be homomorphically mapped onto a ring containing non-trivial idempotents.

- 2006 Smoktunowicz

Theorem 3.4 If A is a nil ring and P is a primitive ideal of $A[x]$ (so under the assumption that Koethe problem has a negative solution), then $P=I[x]$ for an ideal I of A.

- 2008 Smoktunowicz

Example 3.5 There exists a positively graded ring, which is graded-nil and Jacobson semisimple.

- 2008 Smoktunowicz

Theorem 3.6 If R is positively graded, graded-nil and I is a primitive ideal of R, then I is homogeneous.

4 Polynomial rings in several indeterminates

- 2002 Smoktunowicz, 2003 Ferrero and Wisbauer.

Theorem 4.1 If X is infinite then for any (not necessarily nil) ring $A, A[X]$ is Brown-McCoy radical if and only if $A\langle X\rangle$ is Brown-McCoy radical.

- 2002 Smoktunowicz

Theorem 4.2 If $A[x]$ is Jacobson radical, then $A[x, y]$ is Brown-McCoy radical.

- 2003 Ferrero and Wisbauer.

Problem. Is $S(A[x])=S(A)[x]$ for every ring A ?

- 2006 Chebotar, Ke, Lee and E.P.

Theorem 4.3 If A is a nil algebra over a field of a positive characteristic, then $S(A[x])=A[x]$ and $A[x, y]$ is Brown-McCoy radical.

It is not known whether if A is nil algebra over a field of characteristic 0 , then $A[x, y]$ is Brown-McCoy radical.

- In the context of these questions Beidar asked (unpublished):

1. Does there exists a prime ring A with trivial center such that the Martindale central closure of A is a simple ring with 1 ?
2. Does there exist a prime nil ring A such that the central closure of A is a simple ring with 1 ?

- 2008 Chebotar constructed an example answering the first of these questions.

The second question is still open.

5 Some recent results on Z-graded rings

In what follows R is a Z-graded ring.

- Smoktunowicz (arxiv) $N i l(R)$ is homogeneous.
- If R is positively graded, then every homogeneous subring of $J(R)$ is Jacobson radical.

The second of these results was also proved by

- P. H. Lee and E.P. (JPAA, to appear).

Theorem 5.1 Every Z-graded algebra of characteristic $p>0$, which is graded-nil is S-radical.

Theorem 5.2 Every Z-graded ring, which is gradednil, is Brown-McCoy radical.

Corollary 5.3 Every homogeneous subring of a Zgraded ring R is Brown-McCoy radical if and only if R is graded-nil.

Let \mathcal{P}_{h} be the class of prime Z-graded rings R such that $I \cap Z(R) \neq 0$ for every non-zero homogeneous ideal I of R.

Define for a Z-graded ring $R, S_{h}(R)=\bigcap\{I \triangleleft R, I-$ homogeneous $\left.\mid R / I \in \mathcal{P}_{h}\right\}$.

Theorem 5.4 If R is positively graded, then $G(R)=$ $S_{h}(R)$.

6 Quasi duo skew polynomial rings and Z graded rings

A ring A with 1 is called left quasi-duo if every maximal left ideal of A is two-sided. Right quasi-duo rings are defined similarly.

- 2005 Lam and Dugas.

Problem. Is every left quasi-duo ring right quasiduo?

Remark. If there existed a left quasi-duo ring, which is not right quasi-duo, then there would exist a right primitive rings, which is left quasi-duo (so not left primitive).

- 1979 Irving. There exist right primitive skew polynomial rings, which are not left primitive.
- 2008 Leroy, Matczuk and E.P.

Theorem 6.1 Let A be a domain with an automorphism σ. If $A[x ; \sigma]$ is left quasi-duo, then A is commutative and $\sigma=i d$.

Theorem 6.2 For a ring A with an endomorphism $\sigma, A[x ; \sigma]$ is a right (left) quasi-duo ring if and only if
(a) A is right (left) quasi-duo and $J(A[x ; \sigma])=$ $(J(A) \cap N(A))+N(A)[x ; \sigma] x$, where $N(A)=\{a \in$ $A \mid a x$ - nilpotent $\}$
and
(b) $N(R)$ is a σ-stable ideal of A, the factor ring $A / N(A)$ is commutative and the endomorphism σ induces identity on $A / N(A)$.

Theorem 6.3 The following are equivalent

1. $A\left[x, x^{-1} ; \sigma\right]$ is right (left) quasi-duo;
2. $J\left(A\left[x, x^{-1} ; \sigma\right]\right)=N(A)\left[x, x^{-1} ; \sigma\right], A / N(A)$ is commutative and the automorphism of $A / N(A)$ induced by σ is equal to $i d_{A / N(A)}$;
3. $A\left[x, x^{-1} ; \sigma\right] / J\left(A\left[x, x^{-1} ; \sigma\right]\right)$ is commutative.

- 2010 Leroy, Matczuk and E.P.

Theorem 6.4 A Z-graded ring R is right (left) quasiduo if and only if R_{0} is right (left) quasi-duo and $R / A(R)$ is a commutative ring, where $A(R)=\{r \in$ $R \mid R_{n} r \subseteq J(R)$ for every $\left.0 \neq n \in Z\right\}=\{r \in R \mid$ $r R_{n} \subseteq J(R)$ for every $\left.0 \neq n \in Z\right\}$.

